| CODE | MAT1116 | ||||||||
| TITLE | Introduction to Vector Spaces | ||||||||
| UM LEVEL | 01 - Year 1 in Modular Undergraduate Course | ||||||||
| MQF LEVEL | 5 | ||||||||
| ECTS CREDITS | 2 | ||||||||
| DEPARTMENT | Mathematics | ||||||||
| DESCRIPTION | The study-unit will cover: • Introduction to vector spaces; • Linear independence; • Steinitz replacement process; • Linear transformations and matrices; • Dimension theorem, nullity, rank; • Change of basis for linear operators; • Transition matrices. Study-unit Aims: The aim of this study-unit is to introduce the basic ideas and techniques of abstract vector spaces with a good range of examples so that the student acquires some familiarity with the fundamental concepts of abstract algebra and a good grounding for further study. This study-unit will link with other algebra study units students would be taking in the second, third and fourth years. Learning Outcomes: 1. Knowledge & Understanding By the end of the study-unit the student will be able to: 1. Recognise the structures of vector spaces as fundamental concepts in Mathematics; 2. Describe a wide range of examples of vector spaces; 3. Analyse fundamental results in abstract algebra. 2. Skills By the end of the study-unit the student will be able to: 1. Apply the basic definitions and properties of vector spaces; 2. Investigate the basic properties of a good range of examples; 3. Compose clear and accurate proofs using the concepts of vector spaces; 4. Set out a sustained argument in a form comprehensible to others. Main Text/s and any supplementary readings: Main Texts • Lipschutz S. and Lipson M., Linear Algebra, Schaum’s Outline Series, McGraw-Hill, 4th Edition, 2008. Supplementary Readings • Anton H., Elementary Linear Algebra, John Wiley & Sons, 10th Edition, 2010. |
||||||||
| ADDITIONAL NOTES | Follows from: MAT1100 | ||||||||
| STUDY-UNIT TYPE | Lecture and Independent Study | ||||||||
| METHOD OF ASSESSMENT |
|
||||||||
| LECTURER/S | Irene Sciriha Aquilina |
||||||||
|
The University makes every effort to ensure that the published Courses Plans, Programmes of Study and Study-Unit information are complete and up-to-date at the time of publication. The University reserves the right to make changes in case errors are detected after publication.
The availability of optional units may be subject to timetabling constraints. Units not attracting a sufficient number of registrations may be withdrawn without notice. It should be noted that all the information in the description above applies to study-units available during the academic year 2025/6. It may be subject to change in subsequent years. |
|||||||||