OAR@UM Collection:
/library/oar/handle/123456789/83537
2025-12-23T15:21:15ZA transfer learning approach to facial image caption generation generating captions of images of faces from Face2Text
/library/oar/handle/123456789/141973
Title: A transfer learning approach to facial image caption generation generating captions of images of faces from Face2Text
Abstract: Current caption generation models do not adequately describe the subject’s appearance when faced with images of human faces. The creation of the Face2Text dataset led us to explore the feasibility of using transfer learning from domain-relevant models to build a model for this use. We build an encoder-decoder Convolutional Neural Network(CNN) - Long Short Term Memory(LSTM) pipeline model, employing an Attention mechanism and VG-GFace/ResNet CNNs, to compare different optimized variants and determine the suitability of generated captions from the Face2Text dataset. Comparisons are drawn through both automated metrics and human evaluation by 76 English-speaking participants. The captions generated by the VGGFace-LSTM + Attention model are closest to the Ground Truth according to human evaluation. Highest METEOR scores (0.4834) are obtained by the RGFA (ResNet, GloVe, Attention) model, the REFA (ResNet, Uninitialised Word Embeddings, Attention) model obtained the highest CIDEr and CIDErD results (1.2520 and 0.6860 respectively), whilst the best BLEU-4 results were obtained by both the RGFA and REFA models (0.2538). There is less agreement between raters and weak correlation between human evaluation and automated metrics. Qualitatively, most captions give encouraging results, although the model struggles when faced with abnormal facial images. We were successful in our main aim of developing a facial image captioning model for Face2Text using transfer learning, with generated captions being particularly detailed. Despite the results being already fit for use in some areas, possibly beneficial for image retrieval and users who are blind, this is only to be considered as a starting point, and is an encouraging result and baseline for future work.
Description: M.Sc.(Melit.)2021-01-01T00:00:00Z“Multiplikazzjonijiet mewwieġa” : it-traduzzjoni ekoloġika marbuta max-xbihat tal-baħar fil- poeżiji kontemporanji Maltin
/library/oar/handle/123456789/141966
Title: “Multiplikazzjonijiet mewwieġa” : it-traduzzjoni ekoloġika marbuta max-xbihat tal-baħar fil- poeżiji kontemporanji Maltin
Abstract: Din it-teżi tittratta t-Traduzzjoni Ekoloġika u l-Istudji Umanistiċi Blu fil-kuntest lokali, speċjalment fl-era tal-kriżi klimatika. Din tistħarreġ it-traduzzjoni tax-xbihat marbuta mal-baħar u mal-ambjent akkwatiku f’sens wiesa’ biex tipprova timla l-kuxjenza tal-qarrejja b’aktar sensittività ekoloġika madwar il-globu. L-Istudji Umanistiċi Blu ntrabtu mat- Traduzzjoni Ekoloġika għax akkademiċi miż-żewġ dixxiplini bħal Steve Mentz (2024, p. 3-5) u Michael Cronin (2024, p.18) isostnu li l-bidla fl-imġiba tal-bnedmin teħtieġ kollaborazzjoni
b’approċċ multilingwi. L-istħarriġ fuq it-traduzzjoni tal-poeżiji kontemporanji sar fuq ix-xogħlijiet ta’ erba’ poeti: Leanne Ellul, Elizabeth Grech, Immanuel Mifsud u Adrian Grima. Intużaw it-traduzzjonijiet għall-Ingliż tal-poeżiji mill-ġabriet L-Inventarju tal-Kamra l-Kaħla ta’ Ellul li ftit mill-poeżiji tagħha ġew tradotti minn Albert Gatt, u bejn baħar u baħar ta’ Grech ġie tradott fil-ġabra Between Seas minn Irene Mangion. Dawn iż-żewġ poeti ma jittrattawx il- kriżi klimatika direttament, iżda ċerti għażliet lingwistiċi li tlaqqagħna magħhom it-traduzzjoni jew it-temi li tipproġetta joħorġu aspetti intriganti fir-relazzjoni ta’ bejn il-bnedmin u l-ilma. Aktar minn hekk, l-istudju ma kienx komparattiv biss, iżda kellu l-element prattiku wkoll minħabba li ġew tradotti sitt poeżiji mill-ġabra Riħ min-Nofsinhar sabiex l-istudju japplika t-teorija li qed jgħaddi, jiġifieri li jibdew jiġu tradotti testi li espliċitament jittrattaw il-kriżi klimatika. Dawn il-poeżiji ntgħażlu għaliex jittrattaw b’mod ċar temi relatati mal-kriżi klimatika, bħaż-żieda fil-livell tal-baħar, l-ispostament tan-nies, u l-konsegwenzi politiċi u emozzjonali tagħhom, u għalhekk joffru bażi b’saħħitha biex tiġi investigata l-possibbiltà tat-traduzzjoni bħala att ekoloġiku. Dan l-istudju jibda bi sfond fuq l-element marittimu fil-kuntest tal-komunità Maltija li jista’ jiġi applikat għal oħrajn, li ħajjithom ntgħaġnet u għadha tissawwar mill-ilma li jiċċirkonda gżirithom. Imbagħad tingħata ħarsa kritika lejn it-teorija akkademika dwar l- Istudji Umanistiċi Blu u t-Traduzzjoni Ekoloġika, li tiġi segwita minn kapitlu fuq it-traduzzjoni tal-metafora li toffri pedament għall-fehim aktar b’saħħtu tat-traduzzjoni tax-xbihat tal-poeżiji. It-tielet kapitlu se jiffoka fuq il-metodoloġija li ntużat biex intgħażlu l-poeti u fuq il-qafas li fuqu ġie bbażat l-istudju. Il-kapitli segwenti se jittrattaw l-analiżi tal-poeżiji li kienu tradotti, u dawk li ġew tradotti għall-għanjiet ta’ dan l-istħarriġ. Finalment, il-konklużjoni se tiġbor il-qofol tal-istudju u turi li t-Traduzzjoni Ekoloġika flimkien mal-Istudji Umanistiċi Blu, għandhom jippermettu lill-prodotti lokali jidwu mal-globu bil-possibbiltà li jagħmlu differenza soċjalment u kulturalment.
Description: M.Trans.(Melit.)2025-01-01T00:00:00ZComparing linguistic and visuo-linguistic representations for noun-noun compound relation classification in English
/library/oar/handle/123456789/141889
Title: Comparing linguistic and visuo-linguistic representations for noun-noun compound relation classification in English
Abstract: Noun-noun compounds (NNCs), such as ‘restaurant owner’ and ‘city morgue’, are very frequent in the English language, and new ones are created regularly due to the high productivity of compounding as a word formation process. To fully understand the meaning of an NNC, we need to not only know the meaning of its parts, but also deduce the implicit semantic relationship between them. That is, we need to understand whether ‘city morgue’ means ‘a morgue made of cities’, ‘a morgue located in a city’ or something else entirely. Humans have clear intuitions about what relations can hold between the constituents of an NNC, but interpreting NNCs in a computational setting is a challenge. Accurate NNC processing is crucial for the advancement of many natural language processing tasks, including machine translation, text summarization, and natural language inference. Previous methods of computational NNC interpretation have been limited to approaches involving textual representations and linguistic features. However, research from both cognitive science and natural language processing suggests that grounding linguistic representations in vision or other modalities can increase performance on this and other tasks. Backed up by findings about human conceptual combination as well as theories of symbol grounding, our work is a novel comparison of linguistic and visuo-linguistic representations for the task of NNC interpretation. We frame NNC interpretation as a relation classification task, evaluating our approaches on a large annotated NNC dataset, with over 19,000 relationally-annotated compounds (Tratz, 2011). We employ two lines of experiments; one line explores the use of word2vec (Mikolov et al., 2013a) embeddings, compositionally combined into NNC representations in various ways, as inputs to an SVM classifier. The other line utilizes a BERT model, fine-tuned with a classifier layer on top. In both settings, we experiment with combining the textual representations with visual feature vectors obtained with a ResNet (He et al., 2016) model on images from ImageNet (Deng et al., 2009). We find that adding visual features increases performance on almost all data configurations in our SVM experiments, and that the results are statistically significant in some cases. In our BERT experiments, we find that BERT performs well on coarse-grained test data that may include previously seen constituents, but performs poorly on all other data configurations. However, adding raw ResNet feature vectors does increase BERT’s performance on the remaining settings, while normalized ResNet feature vectors contribute to little or no increase in performance. Our findings suggest that a visually grounded approach to NNC interpretation is a promising venture, and we view our novel approach as an encouraging starting point for more investigations into multimodal NNC processing.
Description: M.Sc. (HLST)(Melit.)2021-01-01T00:00:00ZThe association of gender bias with BERT : measuring, mitigating and cross-lingual portability
/library/oar/handle/123456789/141886
Title: The association of gender bias with BERT : measuring, mitigating and cross-lingual portability
Abstract: The development of BERT (Devlin et al., 2018) and other contextualized word embeddings (Radford et al., 2019; Peters et al., 2018) brought about a significant performance increase for many NLP applications. For this reason, contextualized embeddings are replacing standard embeddings as the semantic knowledge base in NLP systems. Since a variety of biases were previously found in standard word embeddings (Caliskan et al., 2017), it is crucial to take a step back and assess biases encoded in their replacements as well. This work focuses on gender bias in BERT, aiming to measure bias, compare this bias with real-world statistics and subsequently mitigate it. Gender bias is measured through associations between gender-denoting target words and professional terms (Kurita et al., 2019). For mitigating gender bias, we first apply Counterfactual Data Substitution (CDS) (Maudslay et al., 2019) to the GAP corpus (Webster et al., 2018) and then fine-tune BERT on these data. Since these methods for measuring and mitigating bias were originally devel-
oped for English, we also adopt a cross-lingual perspective and test whether the approach is portable to German. Unfortunately, we find that grammatical gender in German strongly influences the associations between target and attribute words, which makes it impossible to measure gender bias using the same methodology applied for English. Therefore, further experiments to mitigate gender bias in the German BERT model are discarded. On one hand, we find that gender bias in the English BERT model is reflective of both real-world data and gender stereotypes. We mitigate this gender bias through fine-tuning on data to which CDS was applied. We hope that our positive results for English can contribute to the development of standardized methods to deal with gender bias in contextualized word embeddings. On the other hand, the fact that these methods do not work for German supports previous research calling for more language-specific work in NLP (Gonen et al., 2019; Sun et al., 2019). In light of BERT’s rising popularity, finding appropriate methods to measure and mitigate bias continues to be an essential task.
Description: M.Sc. (HLST)(Melit.)2021-01-01T00:00:00Z